
ISI Research Repo

ISI/RR-88-203

i July 1988

fTi iiLE COPY

University 4

of Souihern
California

Robert Neches

.. FAST Workstation Project Overview

1

INFORMATIONTIONf f_-_______'_. .._-_
SCIENCES ',

INSTITUTE
-4676 Adirna:a Ia/Mar,,1 del Rey/Califoria 90292-6695

OAll

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE / ;.

REPORT DOCUMENTATION PAGE
la REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified

2a. SECURITY CLASSIFI-ATION AUTHORITY 3. DISTRIBUTION/AVAILABILI-Y OF REPORT

_This document is approved for public release,
v . 2b. DECLASSIFICATION/DCWNGRADING SCHEDULE distribution is un'limlted.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

ISI/RR-88-203 ---------------

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

USC/Information Sciences Institute (If applicable) ---------------

6c ADDRESS (City; State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

4676 Admiralty Way
Marina del Rey, CA 90292

8a NAME OF FUNDING/SPONSORING l8b. OFFICE S'MBOL 9. PROCU.,tMENT INSTRUMENT iDENTIFICATION NUMBER
ORGANIZATION i (If applicable)

*DARPA M DA903-86-C-0 178

8c. ADDRE3S (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

DARPA PROGRAM PROJECT ITASK IWORK UNIT
1400 Wilson Blvd. ELEMENT NO NO. NO. ACCESSION NC

Arlincton, VA 22209 1 ----
1 I TITLE (Include Security Classification)

FAST Workstation Project Overview [Unclassified]

4,i~i 12 PERSONAL AUTHOR(S) Neches, Robert

13a TYPE OF REPORT 13b. TIME COVERED '14. DATE OF REPORT (Year, Aonth, Day) T.PAGE COUNT 2
Research Report FROM _ ___TO ____ 1988, July

!6 SUPPLEMENTARY NOTATION

17 COSATI CODES 18- SUBJECT TERMS (Continue on reverse if necessary and ident fy by block number)F;ELD GROUP ISUB-GROUP / .

09L 02U SU-GOU -expert systems, intelligent interfaces, procurement, workstations. (1ce-)

19 ABSTRACT (Continue on reverse if necessary al identify by block number)

-- The FAST Workstation and the FAST Broker 'prjects-aer~ecompanion efforts, which jointly seek to
demonstrate a model for the pursuit of electronic commerce. This model is beina instantiated in a
system supporting procurement of standard electronic parts at low cosLwith short le 3d times, which
seeks to provide a useful purchasing and information service to DoD and theDARPA VLSI research
community. The FAST Broker project focuses on utilization of rapid electronic networks to provide
an intermediary that speeds communications between buyers and vendors. The FAST W..station
project focuses on the development of user and software interfaces to enable human participants in.
the process to easily integrate information and engage in transactions with the ,ystem.Th.s
overview of the FAST Workstation project is divided into four parts. Section 1 describes the research
goals of the effort. Section 2 discusses the relationship between those research goals and the
somewhat more applied goals of the overall FAST effort. Section 3 reviews our research approach in
the four major activity areas of the project. Section 4 summarizes accomplishments to date. /: , -

20 DISTRIBUTION /AVAILABILITY OF ABSTRACT 121. ABSTRACT SECURITY CLASSIFICATION

OUNCLASSIFIEDUNLIMITED ,O SAME AS RPT 0 -TIC USERS I Unclassified

22a NAMr. OF RESPONSIBLE INDIVIDUAL Sheila Coyazo j22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
D Victor Brown 213-822-1511

DD FORM 1473,84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete.

Unclassified

1SI Res'arch Report
ISIIRR -88-203

July 1988

University
of Southern
California '~

Robert Neches

FAST Workstation Project Overview

Aucess1.zn For
STIS GRMI

* DUOC TAS

DUSF ECTMt

Distributiorj/

Availabillity Codaes
valfl, ' d/or

Dist Speojel

INFORMATION
SCIENCES 238211

INS TITUTEYT T.'.4676- Admiralty Way/Marina del Re y/Calffornia 90292-6695
This research is supported by the Defense Advanced Research ProjectsAgency under Contract No. MDA903-86-C-O1 78. Views
and conclusions contained in this report are the author's and should not be interpreted as representing the official opinion or
policy of DARPA, the U.S. Government. or any person or agency connected with them.

1. Goals of tiL FAST Workstation
The immediate goals of the FAST Workstation project are: (1) to provide a

package of flexible, generic software tools; and (2) to demonstrate how particular users
of the FAST Broker can customize those generic tools to create friendly interfaces to tile
Broker that simultaneously meet specialized needs and requirements of their
organization. These immediate goals exist within the context of a larger research goal:
the development of a methodology to facilitate construction of integrated user support
environments. These environments offer non-programmers what programming
environments offer computer programmers -- a set of software tools that work together
to help users accomplish the bulk of their daily activities. Our society is moving toward
"paper-less" work environments in order to remedy pressing -- and expensive -
problems stemming from the need to manage large amounts of informatioa. As we do
so, our ability to provide such environments will be increasingly tested.

Just as a programming environment has identified a set of tools (structure editors,
compilers, debuggers, etc.) that assist in the goals of the programming domain, the F,1st
Workstation project seek to identify analogous general-purpose tools that assist in
domains concerned with the manipulation of technical and logistica! information.
Examples of such tools include mail systems, calendar and scheduling sy.:!,ems, advisory
expert systems, management information systems, personal and pula. c databases,
knowledge bases, and their accompanying browsing and retrieval aids. Just as structure
editors provide a customizable tool in programming environments because a language-
independent editor can be designed to interpret externally-provided syntax
specifications, we would like our tools to be built in a general-purpose way that enables
them to be tuned for specific applications. Just as good programming environments are
marked by close integration between their tools (for instance, the ability t' enter an
editor to examine source code relevant to one's state in a debugger), we world like the
organization of our tools to facilitate the smooth transfer of information -,.d control
between them. For example, we have demonstrated integration between a . :l system
and a database browser such that when the mail system is invoked from th, browser,
users see message templates that are already partially completed based upon the data
under examination, and can recursively invoke the browser on either the same or
different databases to obtain information needed for remaining fields.

In other words, the FAST Workstation project has the dual roles of:

1. demonstrating tools that users could draw upon to facilitate interaction with
the FAST Broker; and

2. researching the notion of "user support environment shells" which, in
analogy to expert system shells, provide a framework that facilitates
construction of specific information management systems.

This report expanls upon these two roles. Section 2 discusses the fih , role with
an emnphasis on our analyses of the needs and requirements of potential government
users of FAST, such as the Defense Logistics Agency. Ve focus on describing us-7

problems requiring assistance, because the workstation capabilities addressing those
needs are described as part of the research. Section 3 discusses the second role, which is
primarily concerned with exploring how to use classification-based declarative
knowledge representations as a unifying paradigm to enhance both the usability and
modifiability of packages of related software tools intended to run on Al workstations.

2. The Workstation's Role in the FAST Concept
The overall goal of FAST is to greatly accelerate progress towards electronic

commerce in the course of developing an automated brokering system fori rapid
procurement of standard items (demonstrated in the area of standard electronic parts).
The system uses computerized network communications and intelligent workstations to
significantly decrease the lead time required for the purchasing process.

DARPA is motivated to advance the concept of computerized commerce because
of the great benefit it can provide to the DARPA research community, the DoD
development laboratories, and to DoD procurement in general. There is also the
possibility that this effort could spark a much wider effort in the country to effectively
utilize computers in commerce and greatly increase the nation's productivity and
competitiveness in the world marketplace.

2.1. Value Added by the FAST Workstation
The Fast Workstation project's primary applied goal is to provide a friendly

i-te-face that will assist users in preparing messages that meet the requirements of the

Broker. It will also help users reason about how to formulate requests that best meet
their c-wn needs. For example, when requesting price quotes for guidance in making
design choices to minimize cost, a user would like to ensure that, the request covers all
and only those alternatives with the particular properties critical to the desigu.

N The FAST Workstation will provide an intelligent agent that blends technical
expertise and purchasing expertise in a single location. This will help reduce delays in
administrative lead time that currently arise because of communications delays and

0- misunderstandings between the technical people who know what they need and the
administrative people who know how to purchase items, but do not recognize the
significance of the items they are ordering. Lack of expertise can cause pm chasing
personnel to fail to detect inappropriate substitutions, to lose time clarifying ambiguous

N. or invalid requests, and so on.

The Workstation will also record policies and procedures, explain them to users,
and monitor the sequence of activities in each purchasing process to ensure compliance
with applicable procedures and regulations. For example, we have learned that at the
Defense Logistics Agency (DLA) management would like to assign purchase requests to a
buyer on the basis of a (currently implicit) profile of the kinds of activities the buyer is
capable of handling. Factors that management would like to take into account in
making these assignments include the buyer's current workload, the technical

N
=0+

3

complexity of the item, and the contracting issues that arise from the size and price of
the intended purchase (for example, different regulations apply to purchases under
$25,000 than to those over that amount).

DLA does not have the technology needed to record the assumptions underlying
an assignment, to ensure that those assumptions are not violated as the process evolves,
or to recommend appropriate action if they are. A common occurrence, for instance, is
that a second purchase request is initiated for the same item before the buyer completes
handling of the original purchase request. For a number of reasons, the second request
may not be assigned to the same individual, although in current practice the fact that it
exists is flagged on the original buyer's terminal. Current practice also mandates that
the two buyers should communicate to agree upon the handling of the requests; there
are regulations governing the circumstances under which the buyers are obligated to
combine them into a single, larger purchase or may continue to handle them separately.

In addition to orchestrating the buyer-to-buyer contact, by collecting the
information needed to decide about combining, it would be desirable for the
Workstation to notice when the effects of doing so raise issues with respect to
management's profile for the user. If combining the two purchase orders raised the
expected cost of an order over $25,000, for instance, more complex contractual issues
are raised. Depending on circumstances and the point of progress in the purchasing
process when the problem arises, it might be appropriate for the Workstation to advise

the buyer to request reassignment of the task to a more experienced buyer. If not, it
might be possible for the Workstation to advise on what further issues must be taken
into account and what work done so far can be reused (e.g., the buyer might still be
able to use some price quotes previously obtained because quotes are often provided
with respect to quantity ranges, but might need additional quotes to meet more
stringent requirements concerning competition).

2.2. Relation of Applied Goals to Research Goals
The kind of support just described involves guiding the user on the content, order,

and timing of the activities required for purchases in particular categories. Workstation
support of this kind will reduce administrative lead-time delays caused by failures to
follow policy (e.g., protests by would-be suppliers, requests for further documentation or
outright rejection during competition advocacy review, etc.) We will discuss how this
sort of support would be implemented in the Workstation later in Section 3.3. It is
important here, however, to note that providing this kind of support is difficult under
conventional technology, and ithat providing such capabilities in an automated
environment requires research. There are several factors in the scenario just descibed
which challenge software developers:

* There is dynamic reasoning required at run time. The behavior of the
*,-- Workstation has to be sensitive to the particular constraints specified by

=o.'- •management for the given buyer. These combine several different factors,
and profiles for different buyers potentially involve different combinations of

0'A

i• - & N ~ & ~~ -

4Ac
tbeohs

N parameters for each factor. Thus, software developers are faced with an
irritating combinatoric problem if they seek to algorithmically specify in
advance the workstation's handling of any possible profile.

e There is a requirement for monitoring across a broad range of user activities.
This is a challenge for software developers, regardless of whether specifying
their system in algorithmic fashion or using a rule-based expert system,
because it threatens the modularity of a system design - and therefore the
maintainability of that syst;em. The software developer is forced to carefully
analyze the functionality of the system in terms of all of the points where an
action can be taken that might violate any of the constraints, to ensure that
branches are taken (or rules are invoked) that check those constraints at
*hose points. This means that code for handling those constraints has to be

,, sprinkled throughout the software. Ensuring that the "sprinkles" fall at
every place they should - and that they continue to do so as the system is

--? -maintained over the years - becomes a daunting task as new constraints are
specified and/or new capabilities are added to the system.

Jr.,:r Although it is possible today to build systems which will do the job called for in
the scenario above, the task is difficult and the resulting systems are hard to extend and
maintain. In our approach, we are trying to provide a framework that makes it easier
for software de--elopers to create and maintain user support environments for tasks of
this nature. In doing so, we are seeking to follow in the footsteps of software
constructors in other areas (e.g., expert system shells and database management
systems), by providing specification languages and processing capabilities that pre-
package for implementors application-independent aspects of a certain class of software.
In the discussion of our research approach in Section 3, we will describe our effort to
address such problems and the supporting technology upon which our approach is
based.

2.3. DoD-related demonstrations
Since the Workstation project is interested in customizing the general-purpose

0 tools it is building in order to demonstrate their utility in realistic DoD procurement
system scenarios, an ongoing activity during the project has involved meetings with a
number of DoD agencies to study current procurement processes and computer support.
These have included multiple meetings with Air Force representatives from procurement
groups at Wright-Patterson AFB and Hill AFB, with Naval representatives involved in

* automation efforts such as the APADE project. and most recently, with representatives
of the Defense Logistics Agency at both the Headquarters and supply center levels.

The Defense Logistics Agency has expresed strong interest at the headquarters
level in becoming a participant in the FAST Broker experiment and ;n developing a
technology transfer path from the FAST Workstation to its own DPACS system;
which is curently undzr development. Figures 1 and 2 illustrate the issues driving
DLA's concern with support env;ronments for their procurement agents. In order to

Figure 1

Problems in Procurement:
Adminstrative Lead Time

Day 0 Day 240

Decision Data Receipt Contract
to buy package of bids signed

Average administrative lead time = 240 days

- Large number of decisions:
800 identified in a study of a particular commodity

- Small percentage really require human judgement:
Eg., Defense Logistics Agency estimates that 68% of
adjustments in quantity ordered are due to rounding
to standard lot sizes

A Bottlenecks

- Regulations

- Gathering information used in decisions

- Slow communications with the outside world

-S.°

6

Figure 2
Hidden Penalties of

Conventional Procurement

Long_ ead times cause higher inventory costs

.- Defense Supply Centers must maintain an average of $1.5
billion in parts on hand, just in order to ensure timely
availability; "just-in-time" ordering is difficult

- Requirements must be forecast on a schedule which takes
lead time into account:

longer-range forecasts = less accurate forecasts

Limited information links and heavy workloads
hamper buyers searching for best prices

- Contracting offices making 5000 buys/month are common;
a buyer may have up to 300 purchase requests active

- Even after suppliers are identified, time spent awaiting
their responses to specific inquiries may exceed internal
processing time by factors of 10:1

These constraints discourage extensive shopping

- Suppliers have reduced incentive to keep their prices low

rI
NI

-. --* ~~7~~~d~ ji

7

make our description of the Workstation effort more concrete and to illustrate its

potential technology transfer opportunities to DoD, we have tended to cast our

examples in terms of DLA's problems and needs'. DPACS (DLA Pre-Award

Contracting System) is a prototype syst that represents a major step for DIA in the
direction of a paperless office environment. It is integrated with a management

,r I information system that gives supervisors some, albeit limited, abilities to automate the
assignment of purchase orders. Individual buyers interact with workstations that allow

them to see lists of purchase orders assigned to them, send messages to other offices,

format information packets and contracts for mailing to vendors, and inspect and
modify different databases (which contain information such as technical characteristics

of items, potential sources of supply, and vendor performance records).

In recent months, in order to understand present and planned DLA systems, we

have visited DLA operations at Defense Electronics Supply Center (DESC) in Dayton

and Defense Industrial Supply Center (DISC) in Philadelphia, and both Defense

4 Construction Supply Center (DCSC) and DLA Systems Automation Command (DSAC)
in Columbus. Assuming the continued interest and support of DLA Headquarters, we

are expecting to target our demonstrations in the third year of the project to illustrate

the possibilities for technology transfer to DPACS and related DLA computer support

systems for logistics.

3. Research Approach
The preceding section illustrated the kinds of services that are needed, and the

M". need for research to make it easier for system developers to produce software that

provides those services. This section describes the issues and activities the project is

pursuing towards the end of meeting those needs. Our research goals center on
usability and modifiability.

4
The .Enhancing the usability of Wo. kstation softwart Involves two major questions.

The first question is how to design tools that help users keep track of extended

V' activities. The second question is how to implement those tools in a manner that
maximizes the extent to which knowledge manipulated in one part of the system, be it

* application code or user interface code, is accessible and used appropriately in all other
parts of the system.

Enhancing the modifiability of these systems involves exploring how to center
their implementation around a single, uniform knowledge base shared by all

® components. The research question is how to develop forms for entering the various
kinds of knowledge used by the system in such a way as to maximize the usability of

IPle2se note, however, that this is by no means the only possible testbed for the workstation effort.
For example, tb- workstation support environment could be customized in other directions to, say,
support designers. The DARPA VLSI research community could benefit from a workstation which, as a
design evolved, provided convenient access to information about pricing and availability of parts, coupled
with the ability to generate orders for all parts on a bill of materials for the design.

InA;V. -.*

8

the knowledge representation for multiple purposes. In doing this, we hope to minimize
the extent to which conceptually equivalent information is duplicated in different forms
in various components of systems.

Under the umbrella of these global research concerns with usability and
modifiability, the FAST Workstation project is engaged four specific areas of research:
control reasoning, information access tools, activity specification, and interface
specification. The following is a brief statement of each of these research areas.

1. Development and augmentation of mechanisms for control of reasoning
within knowledge representation languages. Particular concerns include:
developing a more explicit linkage between rules and the data upon which
they operate, thereby making it easier for system developers to determine
which parts of the system are impacted by a modification. These techniques
will be applied in construction of knowledge bases for both the Broker and
the Workstation.

2. Development of a knowledge base and database browser. Particular
concerns include: mechanisms for allowing flexible search criteria, and
managing requests that involve querying with several different databases.

3. Development of a representation language (called "Scenarios") for extended
activities. Particular concerns include: specifying relationships between sub-
activities, providing mechanisms for helping users keep track of the status of
various activities, and generating advice about allowable next activities given
the current state of progress in a process. The Scenarios language will be
used both for specifying protocols for interaction with the Broker, and for

specifying procedures and regulations governing various kinds of purchases.

4. Development of specification techniques for knowledge-based user interfaces.
Particular concerns include: providing means for designers to explicitly state
policies for how system concepts will be presented, ensuring that design
policies are implemented consistently throughout, and generating
documentation and help from the interface specification. These techniques
will be used to develop the user interfaces for Workstation components such
as the database browser and an electronic mail interface to the broker.

These areas will be described ;n more detail in the subsections below. The
common unifying thread running through these activities can be summarized as follows.

The unifying goal is to develop a single dec!arative mechanism that can be used to
reason about extended activities in many different ways, so that a single representation
can be used to geneate forms for presentation, to structure interaction dialogues, to
organize history and audit-trail mechanisms, and to drive help and explanation
facilities, and so on. There are two ways that developing this representation technology,
which is not currently available, would facilitate the process of constructing future

M A; _1% '- 'VAN_

workstations for different application domains. First, code size would be reduced
because there would be less knowledge that had to be duplicated in slightly differing
guises. Second, different workstation capabilities that tap the same underlying
knowledge would be more consistent because there would be less risk of introducing the
kinds of discrepancies that currently can arise when different capabilities represent
equivalent information in different forms. Our approach to these issues involves
extending and applying classification-based reasoning capabilities in Al knowledge
representation languages.

3.1. Research on Control of Reasoning

3.1.1. Background
ISI has some special technology for addressing these issues. NIKL [Moser

83, Kaczmarek, et al. 86] and LOOM [Mac Gregor 87a] are part of a body of software
Vdeveloped under DARPA auspices that provide significant leverage for our research.)

What NIKL has that commercial languages lack is an automatic classifier [Schmolze
83] for analyzing its knowledge base. KEE comes closest to this among commercial
languages because its knowledge representation is developed from the same historical
roots in KL-ONE; it has better-developed control mechanisms, but no classifier. ISI is
extending NIKL to improve its control mechanisms, and will have them plus the
advantages of a classifier.

What does a classifier do? in KL-ONE-based languages, knowledge is expressed in
syntactic units called "concepts." The NIKL classifier organizes all of the concepts it
knows about into a taxonomy in which more specialized concepts are placed below more

general ones. When the classifier is presented with a new (fully- or partially-specified)
concept, it can determine where that new concept should be located - i.e., it can relate
this new piece of knowledge to the already existing knowledge. Furthermore, the
classifier can discover additional properties of that concept description which were
implied by the interaction of its description with the knowledge base, but which were
not explicitly stated.

The inference capabilities provided by a classifier can be used in a variety of
settings. A classifier can be used analogously to a pattern matcher for a rule system, as
an information retrieval mechanism, as a policeman of correctness and completeness in
augmenting a knowledge base, as a forward- and backward- chaining inference engine,
or as a realizer (a mechanism for identifying which concepts describe a given situation
or a specifi,- fact). Thus, although a classifier is not a general-purpose reasoner, it does
address a number of different significant problems.

The type of reasoning exhibited by a classifier applies to several different
problems. For example, in the process of adding new knowledge to a knowledge base
(i.e., adding new concepts), a user may fal to explicitly specify all of the information
relevant to a particular concept. Often when properties are not explicitly stated, it is
because the person or program creating a new concept did not think of them. The

10

NIIKiL classifier can deduce knowledge about a concept which was implied but not
explicitly stated; thus, NIKL performs a powerful role as a mechanism that discovers
otherwise neglected possibilities and brings them to the attention of other reasoning
components.

3.1.2. New Work
Current technology enables us to build descriptions of new concepts and determine

their appropriate placement in , taxonomic hierarchy of previously defined concepts.
We are seeking to add the capabilities to control activity triggered when such a
classification occurs, and to use both structural and semantic information contained in
the hierarchy to reason about similarities between the newly-added description and
closely-equivalent concepts.

In a number of previous papers [Neches, et al. 85, Neches, Swartout, and Moore
85, Swartout and Neches 86], we have argued for the importance of a separate and
explicit terminological space. By this we meant that the rules or methods of expert
systems interact to produce *results by creating situations to which other rules or
methods respond. The language of terms used to represent such situations comprises
the terminological space for a system. If the terms are not independently defined, then
they are implicitly defined by the behavior of the code that manipulates them. This
creates barriers to the maintainability and explainability of systems: there is no way to
ensure that terminology is used consistently across parts of a system, and no way to
determine how it was intended to be used. (Clancey [Clancey 831 hes also been pointing
out these issues for some time.) The Explainable Expert System project at ISI has been
somewhat concerated with maintainability, thoug. '-argely concerned with explanation,
and has concentrated on the task of encouraging designers to explicitly specify the
abstract plans and goals that lower-level methods or rules are intended to realize.

The FAST Workstation project, in contrast, is focusing explicitly on developing an
execution environment. The goal is to promote integration of different software
ccmponents, as well as maintainability, by making it possible to program directly in
te-ms of actions and goals associated with terminology modeled explicitly in LOOM. In

*- c ntrast to the traditional recognize-act cycle of rule-based systems, the cycle of our
architecture might be characterized as:

" realize -- LOOM deseriptions of data objects are formed, and LOOM is used
to determine where those descriptions would fit with respect to concepts in
the kncwledge hierarchy;

" inherit -- on the basis of the LOOM classifications, goals or actions
associated with concepts that describe the data are collected;

" select -- the set of active goals is augmented by the new-found set, then
pruned;

" plan-and-act -- the system generates sub-goals and new data objects in

V

_j 11.

response to its set of active goals, its knowledge base is modified accordingly,
actions which affect the environment outside the system are executed, and
the cycle is primed to repeat.

3.1.3. Relation to Other Projects
This architecture is being developed in collaboration with ISI's Knowledge

Representation project [Mac Gregor 87b], which is developing the facilities for
realization and inheritance. The FAST Workstation effort is developing the selection
and planning facilities, as well as providing the applications that serve as testbeds. The
general reasoning paradigm is one tbat has been implemented successfully in the past in
application-specific ways in systems such as the CONSUL mapper [Mark 811 and the
EES program writer [Neches, et al. 85]. We hope to extend that experience to provide a
general facility for programming in this fashion.

3.1.4. Benefits
* The environment vwill support sharing of knowledge between different co -,onents

of a system, because the LOOM classifier will ensure that declarations of teims with
equivalent semantics will map to the same concepts in the knowledge base. We believe
that, unlike alternative programraing approaches, integrition will not be bought at the
expense of modular.Gy. This is because programmers will be able to work in terms of
the concepts relevant to actions, rather than having to determine the actions relevant to
concepts in order to define or modify part of a system's behavior. Herein lies our
explanation of how we expect to deal with the kind of monitoring problem described in
Section 2.1, where we wished for a system that would notice when any action violated
constraints on the buyer specified by management, but wanted to avoid the software
development headaches of explicitly programming-in checks for those constraints at
every possible action-point. In the architecture we are developing, the constraints
circumscribing purchasing tasks allowed an individual buyer would be specified as
concepts in the knowledge base. Associated with those concepts would be goals
pertaining to responses. As the realize-inherit-select-plan cycle of the architecture
proceeds, if at any time t.e buy in progress violates a constraint, its description would
become classified as an instance of a violation and inherit the response goals specified.

- Although this sounds like what would be possible in a conventional rule-based system,
the same effect there could only be achieved by surrendering modularity. This is
because a pattern-matcher weaker than the LOOM classifier would not be able to
automatically detect that the violation had occurred; therefore, it would be necessary to
program in control knowledge telling the system when to check.

3.1.5. Plan of Attac z
To ensure useful iatermediate results iL the FAST domain, our pian of attack has

been to implement application-specific classification-based programs in parallel with the
design anO development of the general classification-based programming architecture.

*O These application-specific programs will be reimplemented in our architecture when it
becomes operational. The fist realizatioa of this plan has been an implemented
program called the Generic Description Generalizer, which has formed the domain-

r.i

,@

12

independent basis upon which we have implemented an expert system called the Parts
Advisor. This expert system accepts customer-supplied pa-t numbers that do not
correspond to an actual existing part, and supplies explanations for possible sources of
the error along with suggestions about alternative part numbers that might satisfy the
customer's intents.

3.2. Research on Information Access Tools

3.2.1. Background
Our second major activity area examines paradigms for interacting with systems,

particularly where information retrieval is concerned. Access to multiple databases,
providing information about part descriptions, substitutability of parts, manufacturers
and suppliers, etc., is a ubiquitous requirement of the procurement domain. An
additional complicating factor is the lack of sophistication among the .potential user
community; procurement agents are not the facile computer users found in, say, the
MOSIS user community. (See [Tomovich 88] for an overview of the MOSIS service.)
Ideally, users should be protected from havI ag to know a great deal about the query
language and internal organization for each of the different databases they must access.
Over and above these usability concerns, there are a number of issues affecting the
development and maintenance of user support environments interfacing with multiple
databases. We are particularly concerned with avoiding duplication of information
between databases and the knowledge bases of expert systems, in order to minimize the
cost and effort of maintaining consistency between them.

3.2.2. New Work
To address some of these concerns, we are developing a multi-purpose browsing

interface called BACKBORD (Browsing Aid Complementing Knowledge Bases OR
Databases) [Yen 88, Yen, et al. 88]. BACI(BORD currently operates in two modes. In
one incarnation, it acts as an intelligent database interface guided by a NTKL or LOOM
knowledge base representing abstractions that map to the conceptual schema of a
database. In its other incarnation, it acts as interface to NIKL or LOOM itself. In its
latter use as an aid for examining and modifying knowledge bases, BACKBORD
provides capabilities for retrieving concepts by description as well as by name, for
browsing in an undirected fashion, for organizing systematic inspections, and for adding
new concepts to the knowledge base.

BACOIBORD's presence in a user support environment is intended to benefit both
end-users and system developers/maintainers. To end-users, it provides a uniform
interface for retrieving information from all of the information systems in the
environment regardless of whether those systems rely on conventional database
technology or AI knowledge representations. To system programmers, it provides a
mechanism for inspecting the data structures of the environment, for determining where
to encode intended modifications, and for identifying the parts of the system potentially
affected by those changes.

• 13

The genesis of BACKEORD is the "retrieval by reformulation" paradigm for
database interfaces pioneered in Xerox PARC's RABBIT system fTou, et. al. 82]. This
approach was originally developed to help formulate queries for database users whc.
were capable of recognizing when they had found the data that they needed, but who
were not capable of formulating a query to retrieve that data (either because of
uncertainty about their needs, or because of unfamiliarity with the database schema or
query language). RABBIT allowed users to converge upon a satisfactory query by
successive approximation. Users were presented with an initial query, a display of an
example item retrieved by the query, and a list of other items retrieved. The system

~enabled them to examine the example and modify the query to include or exclude
feataires of the example, according to whether those features were desired in the data
being sought.

BACKBORD extends the retrieval by reformulation paradigm in a number of
important directions. The notion of queries is generalized to descriptions, which are
built on top of the NIKL/LOOM knowledge representation language and therefore have
greater expressive power. BACKBORD provides information about the organization of
the knowledge base pertaining to components of both the description and the examples.
Refinement of the description is speeded by the way it allows access to related concepts
of components, e.g., users can include or exclude not just features from an example, but
generalizations, specializations, or sibling concepts from either the example or the
description itself. Rather than forcing users to operate in a strictly query-oriented, text-
based fashion, BACKBORD combines forms-based textual displays with graphical
displays of knowledge networks, allowing the user to work in whichever mode is more
perspicuous for a particular task or a particular knowledge base structure.
BACI(BORD also differs from previous retrieval-by-reformulation systems in being
designed for integration with other systems, rather than as a stand-alone data retrieval
system.

3.2.3. Work Plan
Having developed an initial system, and demonstrated its ability to map its

descriptions into SQL queries, we are now extending BACKBORD in several different
directions. Among these are its extension as a general interaction paradigm, and ,he
problem of dealing with multiple, heterogeneous databases. The former is discussed in
some depth in [YeL 87]; the key novel idea is that any interaction in which users require
help or information in filling out forms can be treated as an instance of the retrieval-by-
reformulation paradigm. We *refer to this as specification-by-reformulation, since the
purpose is no longer to flesh out a template for a query, but rather to flesh out a

*template for some arbitrary form where the system's help and advice is showing the
user what the possibilities and constraints are in filling out that form. Vie are exploring
this approach to provide our mail interface to the Broker, for example. A declarative
NIKL/LOOM specification of the protocols for different messages to the Broker s.:ffices
to guide the system both in creating forms for the user to fill out, in preparing partially
filled-out forms when the user wants to contact the Broker about items found while
inspecting a database on electronic parts, and in telling the user how to complete the

14

message before it is sent. This serves several goals in our research plan: it is both
another testbed application for the classification-based programming environment, and
a general facility to include as part of the shell we seek to provide that will make it
easier for programmers to rapidly construct user support environments.

Multiple, heterogeneous databases present a second important concern for
BACKBORD. It is important to deal with them efficiently and transparently.
Although we have demonstrated the ability to generate queries to a single SQL
database, and expect soon to demonstrate the ability to access databases remotely, a
practical system will not have the luxury of decreeing that it will only access one SQL
database. We would like BACKBORD to enable users to access information from
different databases. Further, we would like users to be able to do so without needing to
know a great deal about which database contains the information, how the different
databases are organized, or which DBMS they are implemented within. Our approach
is to create a data retrieval interface centered around a knowledge base that contains a
database-independent description of the information being manipulated, along with a
set of mapping rules indicating how to transform this description into the schema of
each individual database. These ideas are being tested by extending the interactive
database interface that we have already implemented. This system currently acts as an
interface to a single database at a time; the extensions being designed are intended to
allow it to support queries that require integrating information across different
databases.

3.3. Research on Activity Specifications: Scenarios

3.3.1. Background
The third research activity of the project concerns the development of tools to

assist use.s with time management and activity tracking. These tools will be domain-
independent interpreters of task-specific declarations that describe the activities of
concern. A key part of this task is defining the language in which those declarations
are expressed.

Scenarios are. program-like descriptions of the sub-tasks that compose extended
tasks such as reading and responding to computer mail. Scenarios are like very high-
level procedures, in that they describe a sequence of steps to be performed. However,
unlike a procedure, a scenario attempts to capture the processes or sequences of
activities that are related by mental plans at the level of the user. Further, a scenario
imposes only orderings between steps that are necessitated by dependencies between
them.

Agendas are a repository for items rep, esenting goals and action requests. An
agenda compiles a central record of those activities (current, pending, and past) a
particular agent has been designated to perform. Our goal is a language for specifying
"scenarios" that denote the responsibilities and actions of various agents in performing
Lasks, ensuring that specifications of scenarios will include the information that a help

15

system requires.

Scenarios operate by attaching the sub-tasks to assorted agendas, each of which
represents the completed and pending tasks of some agent that participates in the task.
An important aspect of the notion of scenarios and agendas is their use in providing
multiple organizations of history. Events in this scheme are represented as agenda
items; the completed events constitute system history. Organized by creation time,
these items present a chronological history. Organized by the scenarios that spawned
them, they represent a goal-ordered view of events. Organized by the agendas upon
which they appear, they represent an attr~bution-oriented view by providing
information on the effects of actions by a particular agent.

Scenarios and agendas provide external memory for "unfinished business",
reducing burdens on users' memories. This is extremely important in practical
applications of the FAST Workstation. For example, DLA, procurement agents are
assigned as many as 300 purchase requests at any given time. It is crucial that they
have a mechanism for keeping track of what has been done, what steps are next, and
what remains to be done, for each purchase request. Under currently available
technology, DLA has been able to builu a system that represents the current state(s) of
a purchase request (e.g., it can record that bids have been received and are being
evaluated with the buyer awaiting responses to questions that had been referred to, say,
Technical Operations and Quality Assurance). They have not been able to build a
system that has an explicit model of the relationships between those states, which would
be able to help users (and their supervisors) with their personal time management by
generating pertinent presentations to answer questions like:

" What should I be working on today?

" What should I do next?

" What can I do to expedite this request?

" What parts of this task have been done?

" Where has the time been spent thus far on this activity?

3.3.2. An Example
Let us consider the following top-level scenario for a small manually processed

purchase request. It illustrates the kinds of things that might be captured in scenarios,
the kinds of displays users might want generated from the execution of a scenario, and
the kind of reasoning that they might expect a system to help them with based on the
knowledge containe in a scenario. (It also reveals some of the different kinds of
databases that need to be accessed at various points in tine.) This scenario has five
major steps at the top level:

1. Review the purchase request for completeness

.m

W M,"N.d

N 16

2. Identify potential suppliers. formulate and transmit requests for quotes

3. Review incoming bids for acceptability with respect to the term3 of the RFQ

4. Evaluate bids for reasonable price

5. Prepare and send contract award materials to winning bidder.

Each of these five major steps has embedded coningencies that involve alternative
sub-scenarios. For example, in the process of ident:Y.; -,g potential suppliers, the buyer
is required to sample without replacement from a list of qualified vendors. After
retrieving that information from a database, ideally, the buyer checks the candidate
vendors against various other databases. These provide information about the
performance record of the candidates with respect to price, quality, and delivery
schedule.

One of the frustrations of the current regulatory environment is that buyers
cannot refuse to solicit bids from candidates with poor records. However, the presenceof a candidate with a poor record indicates the buyer should act out a special scenario

* "intended to respond to the difficulty. This might include adding additional vendors to
the candidate list to increase the likelihood of the poor performer being outbid. It
might also include adding conditions to the RFQ or to the final contract, and (to use
our jargon) the assertion of extra activities in the agenda of tasks pertaining to analysis
of incoming bids. For example, at contract preparation time, the buyer might see an
agenda item calling for the inclusion of a clause allowing cancellation if delivery
schedules a e not met. The general point is that if either the system or the user detects
that this special scenario applies, the scheme provides the mechanisms for ensuring that
the user is reminded at the appropriate times. This is potentially a very significant aid;keep in mind that procurement agents must deal with literally hundreds of activetransactions and these reminders might need to be delivered days, weeks, or even

months later.

Answering time management and planning questions of the type described above

would become a matter of simply listing agenda items retrieved according to various
keys, such as the class of task they represent, the kind of scenario that spawned them,
and so on.

3.3.3. Research Plan
0 Our approach to these goals continues from work done on a plan definition

'language in the Explainable Expert Systems project [Neches, et al. 85, Swartout and
. Neches 861. That language provided a relatively simple syntax for specifying plans in

terms of goals that they served to accomplish and methods for achieving them. Goals
were represented in NIKL, and a special-purpose planner that utilized the NII(L

$_ classifier as a pattern-matcher enabled the system to develop plans on a much more
sophisticated basis than merely seeking exact matches between sub-goals in a plan and

w-

17

A the capabilities declared for candidate sub-plans. Over and above finding exact

matches, the system could find matches based on logical subsumption between the
capabilities of a plan and '.he requirements of a goal; and could also search for
reformulations of goals that it could not plan directly. Thus, for our purposes, it
provides a way of declaratively describing goal-based activities that has a great deal of
flexibility in capturing connections between goals expressed at one level and finer-
grained decompositions of those goals at lower levels.

S-,-, ral extensions and modifications are needed to adapt the plan definition
language to the purposes of scenarios. The specification of plan methods assumed an
overly-rigid, algorithmic flow of control between the actions in the plan; we need to
provide instead a more dataflow-oriented specification since we wish to be able to model
alternative action sequences that satisfy a given plan. We need to add operators to the
language for creating and modifying agenda items. We wish to move the language from
': NItKL to LOOM, in order to benefit from the latter language's solutions to a number of

limitations in NII L. Finally, we want to adapt BACKBORD, our general-purpose
browsing tool, to serve as an interface to allow users to formulate questions about
activities.

The insight behind the work on scenarios is that the sorts of tools which provide
this information -e generic, with potential benefits in many applications. By providing
a domain-independent scenario specification language, and the tools for generating
presentations from them, we hope to save system developers a great deal of ground
work in creating systems that help their users manage time and track activities.

3.4. Research on Interface Specification

3.4.1. Background
One of the most important attributes of an understandable, usable human-

computer interface is consistency -- the basic principle that, whenever possible, similar
system features ought to look 'and operate) in similar ways. The interface construction
component of a shell fc user support environments ought to actively enforce

* consistency in the user interface design. However, existing technology for specifying
interfaces -- although serving to make consistency possible -- does nothing to require or
encourage it. State-of-the-art tools (such as the FORMS-KIT package described in the
next subsection) provide the ability to specify display forms in a parameterized, and
therefore reusable, fashion. Because the display forms are reusable, an interface
designer can use such tools to produce consistent user interfaces by setting and following
design policies for when to use each kind of form. However, this is all dependent on the
judgment and recall of the designer, because these design policies are implicit,
undocumented, and play no formal role in the specification. The designer must ensure
that the appropriate fo: m is used at all places where the design policy dictates that it
should be used.

For example, in our BACKBORD browsing interface, we have the notion of an

18

inspect, then select interaction which is fairly pervasive throughout the system. In this
kind of interaction, users are presented with a set of choices, and we would like to let
them take action to get more information about some of the choices before selecting a
subset of the alternatives. We would like to identify all cases of this sort of interaction
and have a policy of presenting them through a checklist, a kind of menu in which each
item is followed by two boxes, one that displays a checkmark when the user inspects the
item, and one that displays a checkmark when the user selects an item. Checklists
serve to remind users of what decisions remain to be made in complex selection tasks.
The implicit convention is that, when any new facility is added to the system, checklists
will be used to present that facility if it satisfies this description.

Our long-range goal is to provide an environment for interface developers that
promotes high-quality, consistent designs by making such currently implicit conventions
into an explicit component of a formal design specification. Descriptions of our goals
for this environment have been published in [Neches 86, Neches 88]. This is a long-term
effort, and only a portion of this effort is being -irsued under the sapport of the FAST
Workstation project. This subsection briefly descriLes the overall vision, and the
remaining subsections describe the work being performed within the project that
pertains to this topic.

The key idea is to build a core knowledge base that describes abstract
communication activities at a level common to all interfaces. Given this core knowledge
base, we can provide tools that will help interface designers specify their particular
interfaces. To do so, they describe the communications of their interfaces; the tools
attempt to classify those descriptions as specializations of the generic concepts in the
core knowledge base. The designers also define rules for presentation and input
analysis, and associate those rules with concepts in the extended knowledge base about
communications. These rules are then propagated down by inheritance to the concepts
that represent the specific interface design, and the combined overall specification can
be checked for conflicts and inconsistencies. In addition to promoting consistency by
making it possible to analyze an explicit specification for inconsistency, this approach
also seeks to contribute by automating the task of implcmenting the policies represented

Nin the specification. Presentation properties of communication activities (such as the
abstract inspect, then select previously described) could be specified at a high level;

v each specific cas2 tha satisfies the description of some abstract concept automatically
inherits those properties without the interface builder having to remember to explicitly

1. "d assign those properties.

i0 This long-range scheme depends on four things:

1. a support environment for designers,

2. a foundation knowledge base,

3. a set of analysis tools for. evaluating the consistency of a specification, and

6

Q= 19

4. a set of implementation aids for generating implementations from a design
specification.

The last two areas are not being pursued within the Workstation effort. Since this
project focuses on the general problem of user support environments, the tools it
produces contribute indirectly to the first goal. A small effort is in progress within this
project to contribute to the second area - construction of a foundation knowledge base.
That effort is the topic of the remainder of this section.

3.4.2. Base Technology
The starting point for our work on user interfaces is FORMS-KIT [Kaczmarek

84] [goldman 88], a generalized package for specifying the appearance of forms-oriented
presentations (e.g., text displays, menus, and so on). The package is currently in use by
a number of DARPA-funded ISI projects, including FSD, Integrated Interfaces, and
FAST Workstation. One of its notable features is that it provides a large machine-
independent specification base built on top of a relatively small machine-dependent
substrate. Thus, interfaces built using FI'RMS-IT are likely to be very easy to port
across hardware.

FORMS-KIT provides a means of giving declarative descriptions of structured
presentations and recording interface output history. The-design of the facility includes
multi-media devices and provides support for keyboards, mice, text, and bitmap -images.
The system also provides a methodology for defining the interactive behavior of
presentation objects, that is, the interface actions associated with them. Other
interaction objects can potentially be built from the primitives that it provides. For
example, icons are bitmap images with particular interaction behavior, and menus are
textual displays with particular interaction behavior. However, further work is needed
before FORMS-KIT supports the full range of presentation mechanisms that. would be
desirable.

The design of FORMS-KIT also provides an underlying architecture based on data
abstraction, intended to help'separate code for the user interface from code for the
application. A dictionary of defined data types is used to manipulate display objects
and invoke application functions.

The limitation of FORMS-I(IT is that it expresses the presentation of various
communication activities (e.g., the checklist form), without representing the underlying
communication activity (e.g., the inspect, then select process). This property is
representative of the state of the art, not just of the particular system we have chosen
to use.

3.4.3. Plan of Action
We would like to remedy two problems with this limitation. First, absence of the

specification of the intended use of a form makes it harder for developers inspecting the
system to recognize when they should use an existing form rather than creating a new
one. Second, it fails to modularize the user interface sufficiently; the interface code that

~20

defines a presentation is intertwined with the interface code that manages
communications with the application.

Our solution is to develop a layer of language above FORMS-KIT that attempts
to better separate the form from the content of presentations. Pedro Szekely's recent
thesis on the NEPHEW user interface management system [Szekely 87] has
demonstrated the feasibility of this approach, and shows that the modularization
problem is solvable. NEPHEW provides the groundwork for making this division by
enabling interface designers to modularize the interface into commands, which represent
the content or intent of a communications activity, and presenters and recognizers,
which represent the display of that activity. We hope to extend NEPHEW by
developing a principled taxonomy of command classes, presenters, and recognizers. ThisEwill be based on empirical analyses of the interfaces being constructed for the FAST

Workstation. With this taxonomy, we will be able to express generalizations about
,":,.* policies for associating classes of presenters and recognizers with classes ofcommunication concepts. This will allow us to retain the benefits of Szekely's solution

to the modularization problem while also offering a solution to the first problem.

4. Accomplishments to Date
Section 3 has described the goals, issues, and plans of action in each of the FAST

Workstation project's four research activity areas. In this section, we summarize the
results achieved thus far.

Much of the implementation work in the project has centered around a general-
purpose information retrieval aid. In the design of this aid, domain-independent
components have been developed to operate upon domain-specific specifications. The
latter provides an abstraction hierarchy over and above the conceptual schema of a
particular database, while the domain-independent components constitute a browsing
and retrieval facility. This facility interprets the domain-specific specification in orderto provide a great deal of help and guidance to users concerned with understanding the
database schema and/or formulating particular queries. The domain-specificspecification, represented in the NIKL language, allows an application-builder to

r associate actions with class concepts defined in the specification. When a user isA manipulating any object, the domain specific actions inherited through that object's
* class memberships are offered to the user as options along with built-in domain-

independent functions. Thus, the system readily supports customization for particular
applications.

foundThe domain-independent component, BACIBORD, implements a "specification-
by-reformulation" paradigm intended to help users who can recognize when they have
found the information that they need, but who do not initially know how to formulate
a query that will retrieve that information. In this paradigm, BACKBORD presents_ users with an initial query and an example drawn from the set of items retrieved by
that query. It then allows the user to examine the structure of conceptual hierarchies
above and below fields in both the query and the example. The system enables the user

A

21

to utilize the results of that examination to modify the query. Modifications take the
form of generalizing or specializing restrictions on either the type of items sought, or on
the properties associated with items of a given type.

BACKBORD currently handles databases implemented i own internal
format, or it can generate SQL queries to external databases'. 1, _s a .orms- and
menu- based interface augmented with a graphical interface. This llows users. o select
any concept in any part of a query or example, see a graphical -nictsjn of the
relationships between that concept and its generalizations and sp,-ci I;. ,ons in the
knowledge base, and then select one or more of those related conccp~s for use in
modifying the query. A mechanism for "jumping" in the knowledge base (quickly

replacing one initial query with another) has been implemented. A history mechanism
has been provided, which allows users to return to previous queries without having to
reconstruct them.

A domain-specific knowledge base, FRED (Fast Retrieval from Electronics
Databases), supplies an abstraction hierarchy above data about memory IC's found hi
the "IC Master Handbook". (This is a standard reference database widely used in both
hardcopy and on-line formats.) Using this knowledge base in conjunction with
BACKBORD allows users to create* arbitrary descriptions of needed items and find
parts that satisfy those descriptions. It also enables users to start with a description of
a specific part, and to conveniently browse the database to search for close equivalents.

The Workstation also enables users to operate upon part descriptions in order to
produce messages concerning them to the FAST Broker system. We have completed the
initial implementLiion on a set of domain-specific actions that will allow users to do
this. The implementation is a test of our methodology for supporting readily
customizable software. Another technically interesting aspect of that implementation is
that the messages and the actions applicable to them are specified in exactly the same
format as that used for the information retrieval components of the system. This
means that the same general-purpose capabilities in BACKBORD that help users
understand how to elaborate their information retrieval queries can also apply to
helping them prepare messages that meet their needs and satisfy the protocols for
communication with the Broker.

The Fast Workstation project has also implemented the Generic Description

Generalizer, a domain-independent facility for examining conceptual lattices to
generate useful abstractions of a given concept description. This has been demonstrated

L _ in two domain-specific applications related to the project's concern with providing

intelligent aids in the procurement of electronic parts. The first application, the Part
Number Advisor, is a small expert system that provides useful feedback to users who

7 specify invalid part numbers; the system works by parsing the invalid part number,
then using the Generic Description Generalizer to find valid close
approximations to the properties implied by the invalid specification. The second
application, the Equivalence Advisor, accepts specifications of valid parts and finds
alternative parts which are acceptable substitutes within given criteria. Implementation

:NI I

22

of these two applications, in addition to providing some useful application-specific
functionality, has been served as an exercise relevant our research goals of developing
techniques for enhanced modifiability and maintainability .of software. The systems are
the first demonstration of the approach of centering applications code around domain-
independent interpreters (in this case, the Generic Description Generalizer) of
largely declarative specifications that are shared across multiple applications,

XI

"N

* 23

References

[Clancey 83] Clancey, W., "The Epistemology of a Rule-Based Expert System: A
Framework for Explanation ," Artificial Intelligence 20, (3), 1983, 215-251.

[goldman 88] Goldman, N. and Miller, B., Forms Int -face Construction KIT Manual,
USC / Information Sciences Institute, 1988.

[Gurfield, et. al. 87] R.M. Gutfield, J. Postel, E. Anderson, P. Caruso, F. Chaparro,
V. Morriss, A-L Neches, C.M. Rogers, & J. Brooks, FAST - an Automated Broker
for Electronic Parts Procurement, 1987. ISI Internal Working Paper.

- [Kaczmarek 84] Kaczmarek, T., A Forms-Based Interaction Design Tool. Internal
memo, USC-Information Sciences Institute

[Kaczmarek, et al. 86] Kaczmarek, T., Bates, R., and Robins, G., "Recent
-_ developments in NIKL," in Proceedings of the National Conference on Artificial

A Intelligence, pp. 978-985, American Association for Artificial Intelligence,
Philadelphia, PA, 1986.

[Mac Gregor 87a] Robert Mac Gregor and Raymond Bates, The Loom K~nowledge
0 Representation Language, 1987.

[Mac Gregor 87b] Robert Mac Gregor, The Knowledge Representation Project at ISI,
USC/Information Sciences Institute, Technical Report USC/ISI Technical Report

RR-87-199, 1987.

[Mark 81] Mark, W., "Representation and Inference in the Consul System," in
Proceedings of the Seventh International Joint Conference on Artificial
Intelligence, IJCAI, Vancouver, B.C., August 1981.

[Moser 83] M.G. Moser, "An Overview of NIK, the New Implementation of KI-
ONF," in Research in Natural Language Understanding, Bolt, Beranek, and
Newman, Inc., Cambridge, MA, 1983. BBN Technical Report 5421.

[Neches 86] Neches, R., "Knowledge-based Interaction Tools," in Proceedings of the
1986 IEEE Conference on Systems, Man, and Cybernetics, The institute of
Electrical and Electronics Engineers, 1986.

[Neches 881 Neches, R., "Knowledge-Based Tools to Promote Shared Goals and
Terminology Between Interface Designers," IEEE Transactions On Office
Information Systems, In press 1988. Revised version of article in Proceedings of
the First Conference on Computer-Supported Cooperative Work, December, 1986

[Neches, et al. 85] Neches, R., Swartout, W., and Moore, J., "Enhanced maintenance
and explanation of expert systems through explicit models of their development,"
Transactions On Software Engineering SE-11, (11), November 1985, 1337-1351.

-4i

0 24

[Neches, Swartout, and Moore 85] Robert Neches, William R. Swartout, and Johanna
Moore, "Explainable (and'Maintainable) Expert Systems," in Proceedings of the
Ninth International Joint Conference on Artificial Intelligence, pp. 382-389,
International Joint Conferences on Artificial Intelligence and American Association
for Artificial Intelligence, August 1985.

[Schmolze 83] Schmolze, J.G. & Lipkis, T.A., "Classification in the Kb-ONE
Knowledge Representation System," in Proceedings of the Eighth International
Joint Conference on Artificial Intelligence, pp. 330-332, IJCAI, Karlsruhe,

PR W. Germany, 1983.

[Swartout and Neches 86] Swartout, W. and Neches, R., "The Shifting Terminological
Space: Ar Impediment to Evolvability," in Proceedings of the National
Conference on Artificial Intellingence, 1986.

[Szekely 87] P.A. Szekely, Separating the User Interface from the Functionality of
Application Programs, Ph.D. thesis, Carnegie-Mellon University, Computer Science
Department, 1937.

[Tomovich 88] Tomovich, C., "MOSIS - A Gateway to Silicon," Circuits &5 Devices,
March 1988.

[Tou, et. al. 82] Tou, F.N., Williams, M.D., Fikes, R., Henderson, A., & Malone, T.,
"RABBIT: An Intelligent Database Assistant," in Proceedings of the National
Conference on Artificial Intelligence, American Association for Artificial
Intelligence, 1982.

[Yen 87] Yen, J. & Neches, R., Retrieval by Reformulation in a Multi-Purpose
Browsing Interface, 1987. ISI Internal Working Paper.

[Yen 88] Yen, J., Neches, R., and DeBellis, M., "BACKBORD: Beyond Retrieval by
Reformulation," in Collected Papers of the Workshop on Architectures for
Intelligent Interfaces: Elements and Prototypes, pp. 219-235, ACM/SIGCH1,
Asilomar, CA, 1988. (Also available as Technical Report ISI/RS-88-202 from USC
/ Information Sciences Institute.)

[Yen, et al. 88] Yen, J., Neches, R., and D- .ilis, M., "Specification by Reformulation:
A Paradigm for Building Integrated User Support Environments," in Proceedings
of the National Conference on Artificial Intelligence, American Association for
Artificial Intelligence, Minneapolis, MN, 1988.

